metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[(μ_2 -2,2'-bi-1*H*-imidazole)bis(μ_3 -hydrogenphosphato)dizinc(II)]

Min-Na Cao, Min Wang, Fei-Hua Luo, Cui-Xia Cheng and Zong-Qiu Hu*

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China Correspondence e-mail: zqhu@mail.ccnu.edu.cn

Received 29 August 2007; accepted 30 August 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.076; data-to-parameter ratio = 12.0.

The Zn^{II} ion in the title compound, $[Zn_2(HPO_4)_2(C_6H_6N_4)]$, exhibits a tetrahedral geometry. It is coordinated by three O atoms from three hydrogenphosphate ions of three different structure units and one N atom of a centrosymmetric bridging 2,2'-biimidazole molecule. In this way, a three-dimensional polymer is built. The crystal packing is stabilized by O– $H \cdots O$, N– $H \cdots O$ and C– $H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Xia *et al.* (2006); Kamar *et al.* (2004); Xiao & Shreeve (2005).

Experimental

Crystal data

$$\begin{split} & [Zn_2(HPO_4)_2(C_6H_6N_4)] \\ & M_r = 456.88 \\ & \text{Orthorhombic, } Pbca \\ & a = 8.8050 \ (5) \text{ Å} \\ & b = 8.8051 \ (7) \text{ Å} \\ & c = 16.6614 \ (14) \text{ Å} \end{split}$$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.501, T_{max} = 0.501$ (expected range = 0.448–0.448)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of
$wR(F^2) = 0.076$	independent and constrained
S = 1.08	refinement
1275 reflections	$\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$
106 parameters	$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$

V = 1291.75 (18) Å³

 $0.20 \times 0.20 \times 0.20$ mm

7551 measured reflections

1275 independent reflections

1167 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 4.01 \text{ mm}^-$

T = 296 (2) K

 $R_{\rm int}=0.094$

Z = 4

Table 1

1

(

N

Hydrogen-bond	geometry	(Å,	°).	
---------------	----------	-----	-----	--

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D2 - H2B \cdots O3^{i}$ $N2 - H2A \cdots O1^{ii}$ $D2 - H2 \cdots O2^{iii}$	0.80 (4) 0.77 (4) 0.93	1.84 (4) 2.05 (4) 2.50	2.615 (3) 2.804 (3) 3.303 (4)	165 (4) 168 (4) 145
	. 1 . 1 . 7	**) 1.1	- 1 (;;;)	1 1

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) -x + 1, -y, -z + 1; (iii) $-x + \frac{1}{2}$, -y, $z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

The authors thank Xianggao Meng for assistance with the refinement of the structure.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2492).

References

Bruker (2001). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Kamar, K. K., Falvello, L. R., Fanwick, P. E., Kim, J. & Goswami, S. (2004). Dalton Trans. pp. 1827–1831.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Xia, C.-K., Lu, C.-Z., Yuan, D.-Q., Zhang, Q.-Z., Wu, X.-Y., Xiang, S.-C., Zhang, J.-J. & Wu, D.-M. (2006). *CrystEngComm*, 8, 281–291.

Xiao, J.-C. & Shreeve, J. M. (2005). J. Org. Chem. 70, 3072-3078.

supplementary materials

Acta Cryst. (2007). E63, m2456 [doi:10.1107/S160053680704250X]

Poly[(μ_2 -2,2'-bi-1*H*-imidazole)bis(μ_3 -hydrogenphosphato)dizinc(II)]

M.-N. Cao, M. Wang, F.-H. Luo, C.-X. Cheng and Z.-Q. Hu

Comment

Biimidazole (H₂biim) is a bidentate chelating ligand with multiple proton-donor sites which can coordinate to a transition metal in its neutral (H₂biim), singly-deprotonated (Hbiim⁻) and doubly-deprotonated (biim^{2–}) forms. Coordinated H₂biim usually forms hydrogen bonds with counteranions or solvent molecules (Xia *et al.*, 2006); Kamar *et al.*, 2004).

Here, we report the synthesis and crystal structure of the title compound, which contains Zn(II) ions, neutral H₂biim molecules and hydrogen phosphate ions. The Zn^{II} ion exhibits a distorted tetrahedral geometry. It is coordinated to three O atoms from a hydrogen phosphate ion and one N atom of a 2,2'-biimidazole.

The crystal packing is stabilized by O-H···O, N-H···O and C-H···O hydrogen. bonds.

Experimental

2,2'-biimidazole was synthesized according to the literature procedure (Xiao & Shreeve, 2005). A mixture of $Zn(NO_3)_2 \cdot 4H_2O$, 2,2'-biimidazole in 1:1 molar ratio with 0.2 ml H₃PO₄ and 10 ml water was sealed into a Teflon-lined pressure vessel and heated at 433 K for 72 h. After the mixture cooled to room temperature, colourless crystals were formed, collected by filtration, washed in deionized water, and finally dried in air.

Refinement

After having located them in a difference map, H-atoms bonded to C were fixed geometrically at ideal positions and allowed to ride on their parent atoms with C–H=0.93 Å and $U_{iso}(H)=1.2U_{eq}(C)$, $1.2U_{eq}(N)$, or $1.5U_{eq}(O)$. The coordinates of the H atoms bonded to N and O were refined.

Figures

Fig. 1. View of the molecular structure of (I), showing 50% probability displacement ellipsoids for the non-hydrogen atoms. [Symmetry codes:(a) 3/2 - x, -y, 1/2 + z]

Fig. 2. Part of the crystal structure of the title compound. Hydrogen bonds are shown as dashed lines.

$Poly[(\mu_2 - 2, 2' - bi - 1 \textit{H-imidazole}) bis(\mu_3 - hydrogenphosphato) dizinc(II)]$

Crystal data	
$[Zn_2(HPO_4)_2(C_6H_6N_4)]$	$F_{000} = 904$
$M_r = 456.88$	$D_{\rm x} = 2.349 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 4008 reflections
a = 8.8050 (5) Å	$\theta = 2.6 - 28.2^{\circ}$
b = 8.8051 (7) Å	$\mu = 4.01 \text{ mm}^{-1}$
c = 16.6614 (14) Å	T = 296 (2) K
$V = 1291.75 (18) \text{ Å}^3$	Block, colourless
Z = 4	$0.20\times0.20\times0.20\ mm$

Data collection

Bruker SMART CCD area-detector diffractometer	1275 independent reflections
Radiation source: fine-focus sealed tube	1167 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.094$
T = 296(2) K	$\theta_{\rm max} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -10 \rightarrow 10$
$T_{\min} = 0.501, \ T_{\max} = 0.501$	$k = -10 \rightarrow 10$
7551 measured reflections	$l = -20 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.076$	$w = 1/[\sigma^2(F_o^2) + (0.0384P)^2 + 0.9211P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{max} < 0.001$
1275 reflections	$\Delta \rho_{max} = 0.62 \text{ e } \text{\AA}^{-3}$
106 parameters	$\Delta \rho_{min} = -0.63 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

F 1		1	1	• , •		• 1 /	• , •	1.	1 ,	,	18	Ζ \
Fractional	atomic	coordinates	and	isotropic	or	eauwalent	isofronic	disn	lacement	narameters	IA	-)
1 i actionat	aronne	coordinates	cirici	ison opie		equivalent	isonopie	cusp:	accentent	parameters	(**	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.32416 (4)	0.09443 (4)	0.670742 (19)	0.01604 (15)
C1	0.4213 (3)	-0.0248 (3)	0.50171 (16)	0.0182 (6)
C2	0.2054 (4)	-0.1293 (4)	0.4651 (2)	0.0295 (7)
H2	0.1320	-0.1817	0.4361	0.035*
C3	0.1870 (3)	-0.0582 (4)	0.5357 (2)	0.0270 (7)
H3	0.0966	-0.0540	0.5645	0.032*
N1	0.3221 (3)	0.0079 (3)	0.55921 (14)	0.0198 (5)
N2	0.3541 (3)	-0.1087 (3)	0.44472 (17)	0.0258 (6)
H2A	0.387 (4)	-0.139 (4)	0.405 (2)	0.031*
01	0.4899 (2)	0.2367 (2)	0.68551 (11)	0.0201 (5)
O2	0.4137 (2)	0.3524 (3)	0.81871 (12)	0.0204 (5)
H2B	0.344 (4)	0.389 (4)	0.795 (3)	0.031*
O3	0.3408 (2)	-0.0739 (2)	0.74787 (13)	0.0190 (4)
O4	0.1231 (2)	0.1699 (3)	0.68453 (13)	0.0240 (5)
P1	0.55013 (7)	0.29324 (8)	0.76628 (4)	0.01433 (19)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0150 (2)	0.0183 (2)	0.0149 (2)	0.00045 (13)	0.00130 (12)	-0.00147 (12)
C1	0.0196 (14)	0.0219 (14)	0.0131 (13)	-0.0020 (12)	0.0005 (11)	-0.0027 (11)
C2	0.0226 (15)	0.0432 (18)	0.0227 (17)	-0.0135 (15)	0.0019 (14)	-0.0065 (15)
C3	0.0175 (15)	0.0409 (18)	0.0224 (17)	-0.0056 (14)	0.0043 (13)	-0.0038 (14)

supplementary materials

N1	0 0174 (13)	0 0265 (13)	0 0153 (12)	-0.0030(10)	0 0008 (9)	-0.0017(10)
N2	0.0233 (13)	0.0360 (16)	0.0179 (14)	-0.0068(12)	0.0047 (11)	-0.0104(11)
01	0.0189 (10)	0.0256 (11)	0.0157 (10)	-0.0058 (9)	0.0003 (8)	-0.0038 (8)
02	0.0130 (10)	0.0300 (12)	0.0182 (10)	0.0073 (10)	0.0001 (8)	-0.0007 (8)
O3	0.0155 (10)	0.0213 (10)	0.0202 (11)	0.0008 (8)	0.0011 (8)	0.0039 (8)
O4	0.0167 (10)	0.0240 (11)	0.0313 (12)	0.0046 (9)	0.0017 (9)	-0.0075 (9)
P1	0.0108 (3)	0.0179 (4)	0.0143 (4)	0.0012 (3)	-0.0001 (3)	-0.0012 (3)
Geometric paran	neters (Å, °)					
Zn1—O4		1.905 (2)	C3—N	1	1.38	(4)
Zn1—O1		1.939 (2)	С3—Н	3	0.930	00
Zn1—O3		1.967 (2)	N2—H	2A	0.77	(4)
Zn1—N1		2.009 (2)	O1—P	1	1.530) (2)
C1—N1		1.328 (4)	O2—P	1	1.574	4 (2)
C1—N2		1.340 (4)	O2—H	2B	0.80	(4)
C1—C1 ⁱ		1.454 (5)	O3—P	1 ⁱⁱ	1.532	2 (2)
С2—С3		1.343 (5)	O4—P	1 ⁱⁱⁱ	1.505	5 (2)
C2—N2		1.365 (4)	P1—O4	4 ^{iv}	1.505	5 (2)
С2—Н2		0.9300	P1—O	3^{v}	1.532	2 (2)
O4—Zn1—O1		117.29 (9)	C1—N	1—Zn1	138.0) (2)
O4—Zn1—O3		104.68 (9)	C3—N	1—Zn1	115.4	46 (19)
O1—Zn1—O3		110.36 (9)	C1—N	2—С2	108.7	7 (3)
O4—Zn1—N1		103.63 (9)	C1—N	2—H2A	130 ((3)
01—Zn1—N1		111.68 (9)	C2—N	C2—N2—H2A 122		(3)
O3—Zn1—N1		108.61 (9)	Р1—О	1—Zn1	125.0	55 (12)
N1—C1—N2		109.9 (2)	Р1—О2—Н2В		116 (3)	
$N1-C1-C1^{1}$		126.2 (3)	P1 ¹¹ —C	03—Zn1	121.4	14 (12)
N2—C1—C1 ⁱ		123.9 (3)	P1 ⁱⁱⁱ —0	D4—Zn1	135.0	51 (14)
C3—C2—N2		105.8 (3)	O4 ^{iv} —	P1—O1	113.1	2 (13)
С3—С2—Н2		127.1	O4 ^{iv} —	P1—O3 ^v	111.5	54 (12)
N2—C2—H2		127.1	O1—P	$1-03^{v}$	109.3	30 (12)
C2—C3—N1		109.9 (3)	O4 ^{iv} —	P1—O2	105.2	22 (12)
С2—С3—Н3		125.0	O1—P	1—02	109.3	35 (12)
N1—C3—H3		125.0	O3 ^v —I	P1—O2	108.1	13 (12)
C1—N1—C3		105.7 (2)				
N2—C2—C3—N	1	0.6 (4)	C1 ⁱ —C	C1—N2—C2	-177	.4 (4)
N2-C1-N1-C	3	-0.6 (3)	C3—C	2—N2—C1	-1.0	(4)
C1 ⁱ —C1—N1—C	3	177.8 (4)	04—Z	n1—O1—P1	76.82	2 (17)
N2-C1-N1-Zi	n1	168.2 (2)	O3—Z	n1—O1—P1	-42.8	89 (18)
C1 ⁱ —C1—N1—Z	n1	-13.4 (6)	N1—Z	n1—O1—P1	-163	.81 (14)
C2—C3—N1—C	1	0.0 (4)	O4—Z	n1—O3—P1 ⁱⁱ	153.0	03 (13)
C2—C3—N1—Z1	11	-171.8 (2)	01—Z	n1—O3—P1 ⁱⁱ	-79.9	90 (15)
O4—Zn1—N1—O	C1	157.1 (3)	N1—Z	$-Zn1-O3-P1^{ii}$ 42.83 (16)		3 (16)
O1—Zn1—N1—O	C1	30.0 (3)	01—Z	n1—O4—P1 ⁱⁱⁱ	-29.4	4 (2)

supplementary materials

O3—Zn1—N1—C1	-92.0 (3)	O3—Zn1—O4—P1 ⁱⁱⁱ	93.3 (2)
O4—Zn1—N1—C3	-34.8 (2)	N1—Zn1—O4—P1 ⁱⁱⁱ	-153.0 (2)
O1—Zn1—N1—C3	-161.9 (2)	Zn1—O1—P1—O4 ^{iv}	65.95 (18)
O3—Zn1—N1—C3	76.1 (2)	Zn1—O1—P1—O3 ^v	-169.13 (14)
N1—C1—N2—C2	1.0 (4)	Zn1—O1—P1—O2	-50.94 (18)
Symmetry codes: (i) $-x+1, -y, -z+1$; (ii)	-x+1, y-1/2, -z+3/2; (iii)	x-1/2, y, -z+3/2; (iv) $x+1/2, y, -z+3/2;$ (v)	(x) -x+1, y+1/2, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2B···O3 ^{vi}	0.80 (4)	1.84 (4)	2.615 (3)	165 (4)
N2—H2A····O1 ⁱ	0.77 (4)	2.05 (4)	2.804 (3)	168 (4)
C2—H2···O2 ^{vii}	0.93	2.50	3.303 (4)	145
Symmetry codes: (vi) $-x+1/2$, $y+1/2$, z ; (i) $-x+1$, -	-y, -z+1; (vii) $-x+$	1/2, -y, z-1/2.		

Fig. 1

